Energy- and Performance-Driven NoC Communication Architecture Synthesis Using a Decomposition Approach

  • Authors:
  • Umit Y. Ogras;Radu Marculescu

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the conference on Design, Automation and Test in Europe - Volume 1
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a methodology for customized communication architecture synthesis that matches the communication requirements of the target application. This is an important problem, particularly for network-based implementations of complex applications. Our approach is based on using frequently encountered generic communication primitives as an alphabet capable of characterizing any given communication pattern. The proposed algorithm searches through the entire design space for a solution that minimizes the system total energy consumption, while satisfying the other design constraints. Compared to the standard mesh architecture, the customized architecture generated by the newly proposed approach shows about 36% throughput increase and 51% reduction in the energy required to encrypt 128 bits of data with a standard encryption algorithm.