Guaranteeing performance yield in high-level synthesis

  • Authors:
  • W.-L. Hung;Xiaoxia Wu;Yuan Xie

  • Affiliations:
  • The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Meeting timing constraint is one of the most important issues for modern design automation tools. This situation is exacerbated with the existence of process variation. Current high-level synthesis tools, performing task scheduling, resource allocation and binding, may result in unexpected performance discrepancy due to the ignorance of the impact of process variation, which requires a shift in the design paradigm, from today's deterministic design to statistical or probabilistic design. In this paper, we present a variation-aware performance yield-guaranteed high-level synthesis algorithm. The proposed approach integrates high-level synthesis and statistical static timing analysis into a simulated annealing engine to simultaneously explore solution space while meeting design objectives. Our results show that the area reduction is in the average of 14% when 95% performance yield is imposed with the same total completion time constraint.