Low-power clock distribution using multiple voltages and reduced swings

  • Authors:
  • Jatuchai Pangjun;Sachin S. Sapatnekar

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN;Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Clock networks account for a significant fraction of the power dissipation of a chip and are critical to performance. This paper presents theory and algorithms for building a low-power clock tree by distributing the clock signal at a lower voltage and translating it to a higher voltage at the utilization points. Two low-power schemes are used: reduced swing and multiple-supply voltages. We analyze the issue of tree construction and present conclusions relevant to various technology generations according to the NTRS. Our experimental results show that power savings of an average of 45% are possible for a 0.25 µm technology using multiple supply voltages, and about 32% using a single external supply voltage.