A Test Vector Inhibiting Technique for Low Energy BIST Design

  • Authors:
  • P. Girard;L. Guiller C. Landrault;S. Pravossoudovitch

  • Affiliations:
  • -;-;-

  • Venue:
  • VTS '99 Proceedings of the 1999 17TH IEEE VLSI Test Symposium
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

During self-test, the switching activity of the circuit under test is significantly increased compared to normal operation and leads to an increased power consumption which often exceeds specified limits. In the first part of this paper, we propose a test vector inhibiting technique which tackles the increased activity during test operation. Next, a mixed solution based on a reseeding scheme and the vector inhibiting technique is proposed to deal with hard-to-test circuits that contain pseudo-random resistant faults. From a general point of view, the goal of these techniques is to minimize the total energy consumption during test and to allow the test at system speed in order to achieve high fault coverage. The effectiveness of the proposed low energy BIST scheme has been validated on a set of benchmarks with respect to hardware overhead and power savings.