An analytical model for negative bias temperature instability

  • Authors:
  • Sanjay V. Kumar;Chris H. Kim;Sachin S. Sapatnekar

  • Affiliations:
  • University of Minnesota, Minneapolis, MN;University of Minnesota, Minneapolis, MN;University of Minnesota, Minneapolis, MN

  • Venue:
  • Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Negative Bias Temperature Instability (NBTI) in PMOS transistors has become a significant reliability concern in present day digital circuit design. With continued scaling, the effect of NBTI has rapidly grown in prominence, forcing designers to resort to a pessimistic design style using guard-banding. Since NBTI is strongly dependent on the time for which the PMOS device is stressed, different gates in a combinational circuit experience varying extents of delay degradation. This has necessitated a mechanism of quantizing the gate-delay degradation, to pave the way for improved design strategies. Our work addresses this issue by providing a procedure for determining the amount of delay degradation of a circuit due to NBTI. An analytical model for NBTI is derived using the framework of the Reaction-Diffusion model, and a mathematical proof for the widely observed phenomenon of frequency independence is provided. Simulations on ISCAS benchmarks under a 70nm technology show that NBTI causes a delay degradation of about 8% in combinational logic based circuits after 10 years (≈ 3 x 108s).