Progressive compression for lossless transmission of triangle meshes

  • Authors:
  • Pierre Alliez;Mathieu Desbrun

  • Affiliations:
  • University of Southern California;University of Southern California

  • Venue:
  • Proceedings of the 28th annual conference on Computer graphics and interactive techniques
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Lossless transmission of 3D meshes is a very challenging and timely problem for many applications, ranging from collaborative design to engineering. Additionally, frequent delays in transmissions call for progressive transmission in order for the end user to receive useful successive refinements of the final mesh. In this paper, we present a novel, fully progressive encoding approach for lossless transmission of triangle meshes with a very fine granularity. A new valence-driven decimating conquest, combined with patch tiling and an original strategic retriangulation is used to maintain the regularity of valence. We demonstrate that this technique leads to good mesh quality, near-optimal connectivity encoding, and therefore a good rate-distortion ratio throughout the transmission. We also improve upon previous lossless geometry encoding by decorrelating the normal and tangential components of the surface. For typical meshes, our method compresses connectivity down to less than 3.7 bits per vertex, 40% better in average than the best methods previously reported [5, 18]; we further reduce the usual geometry bit rates by 20% in average by exploiting the smoothness of meshes. Concretely, our technique can reduce an ascii VRML 3D model down to 1.7% of its size for a 10-bit quantization (2.3% for a 12-bit quantization) while providing a very progressive reconstruction.